

AFRL-IF-RS-TR-2002-7
Final Technical Report
February 2002

AGENT-BASED CONFIGURABLE TESTBED

BBNT Solution LLC

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J763

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

Copyright © 2000, 2001 by BBNT Solutions, LLC.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information Directorate,
Public Affairs Office (IFOIPA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including foreign nations.

 AFRL-IF-RS-TR-2002-7 has been reviewed and is approved for publication.

APPROVED:

 DEBORAH A. CERINO
 Project Engineer

 FOR THE DIRECTOR:

 MICHAEL TALBERT, Maj., USAF, Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Pape ork Reduction Project (0704-0188), Washington, DC 20503 rw

1.

 AGENCY USE ONLY (Leave blank) 2. REPORT DATE
 FEBRUARY 2002

3. REPORT TYPE AND DATES COVERED
Final Mar 00 - Dec 01

4. TITLE AND SUBTITLE
AGENT-BASED CONFIGURABLE TESTBED

5. FUNDING NUMBERS
c - F30602-00-C-0082
PE - 63760E
PR - IAST
TA - 00

6. AUTHOR(S)
Richard Lazarus

 WU - 14

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

BBNT Solutions LLC
10 Moulton Street
Cambridge MA 02138

 N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington Virginia 22203-1714

AFRL/IFTD
525 Brooks Road
Rome NY 13441-4505

 AFRL-IF-RS-TR-2002-7

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Deborah Cerino/IFTD/(315) 330-1445

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The ABC Testbed Project spanned the period from April 2000 to December 2001. The project
began as part of the DARPA Information Assurance and Survivability (IA&S) program and
concluded as part of the DARPA Ultra*Log program. The project focus was to contribute
experimentation methodologies and software tools for the understanding of composed,
distributed systems with a particular emphasis on enhancing survivability of these
systems. The idea was to capture the state of developing system and to visualize this
system state in such a manner that it provides intuitive understanding of the system
behavior. The ABC project culminated with the development of the Cougaar Society
Monitoring and Analysis Reporting Tool (CSMART). Cougaar is a large-scale distributed
agent application with minimal consideration for the underlying architecture
infrastructure. CSMART is an integrated toolset for building, running, monitoring, and
analyzing Cougaar societies, and for performing experiments on those societies by
systematically carrying their properties and comparing the resulting behaviors.

14. SUBJECT TERMS
 Distributed Agent-Based Systems, Survivable Distributed Agent

15. NUMBER OF PAGES
52

 Architecture, Logistics Planning and Support 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

C O N T E N T S

1. EXECUTIVE SUMMARY ...1

1.1 PROJECT OVERVIEW ...1
1.2 FINAL PRODUCT OVERVIEW ...2

2. INTRODUCTION AND PROJECT HISTORY...4

2.1 INITIAL IASET GOALS ...4
2.2 ULTRA*LOG GOALS ...5
2.3 IMPLEMENTATION PHASES ...5
2.4 ORGANIZATION OF THIS DOCUMENT..6

3. ABC TESTBED EXPERIMENTATION METHODOLOGY ..7

4. ABC TESTBED DESCRIPTION...9

5. ABC TESTBED PLUGINS...11

5.1 ATTACKER AGENT PLUGINS...11
5.2 FIREWALL AGENT PLUGINS..12
5.3 VICTIM AGENT PLUGINS ..13

6. OVERVIEW OF CSMART..14

6.1 CONCEPT OF OPERATIONS ..14
6.2 CSMART EXPERIMENT COMPONENTS...15

6.2.1 Societies ...15
6.2.2 Experiments ...15
6.2.3 Impacts...16
6.2.4 Metrics ...16

6.3 CSMART TOOL SUITE...16

7. THE ABC SOCIETY AND PLUGINS (BEHAVIOR MODELS) ..18

7.1 ABC SOCIETY OVERVIEW ..18
7.2 PLUGIN DETAILS ..18

8. VISUALIZATION FOR ANALYZING SYSTEM BEHAVIOR ..22

8.1 OVERVIEW..22
8.2 NAVIGATING THE VIEWS ..23
8.3 COMMUNITY VIEW ...24
8.4 AGENT VIEW ..25
8.5 PLAN (EVENT) VIEW ..25

8.5.1 Filtering ...26
8.5.2 Legend ...26

8.6 THREAD VIEW ..27

 i

8.7 GRAPH OBJECT DETAILS DIALOG...27
8.8 METRICS VIEWS ...28

9. EXTERNAL EVENT MODELING...30

9.1 EFFECT-BASED MODELING CONCEPTS..30
9.2 THE TOOLS FOR MODELING EFFECTS ...31
9.3 COMPONENTS OF THE EFFECT-MODELING PROCESS ...31

9.3.1 Event Models, Classes, and Hierarchy..31
9.3.2 Impact Models ..32
9.3.3 The Transducer..33
9.3.4 Infrastructure Hooks..35

9.4 DEVELOPMENT AND USAGE GUIDANCE..35
9.4.1 Current Extensions and Models...35
9.4.2 Creating new Event Types ...41

9.5 INJECTING REAL WORLD EVENTS INTO COUGAAR ...42
9.5.1 Editing Real World Events file...42

10. FUTURE DEVELOPMENT...44

11. REFERENCES ..46

 ii

List of Figures

Figure 1: Example views Illustrating System Behavior 3
Figure 2: Validation Experiment Configuration 11
Figure 3: CSMART Tool Launcher, with Workspace Organizer 17
Figure 4: Society Monitor Tool Launcher 23
Figure 5: Navigation among different information displays 24
Figure 6: Community View for the ABC Society 24
Figure 7: Agents View, Highlighting a Relationship 25
Figure 8: Plan View, displaying the distributed blackboard 26
Figure 9: Thread View 27
Figure 10: Details Dialog, Plan view 28
Figure 11: Task Completion Chart 28
Figure 12: RealWorldEvent Hierarchy 32
Figure 13: ImpactModel Interface 33
Figure 14: Transducer Operation 33
Figure 15: Transduction Process 34
Figure 16: Intensity’s Effect on Event Radius 39
Figure 17: Agent Down time 40
Figure 18: Node vs. Network recovery 41
Figure 19: RealWorldEvent DTD 42
Figure 20: Example RealWorldEvent list 43

List of Tables
Table 1: Cyber Attack Types 36
Table 2: Cyber Attack Event Fields 36
Table 3: CyberAttackEvents to Infrastructure Events 37
Table 4: SimpleKEvent Types 37
Table 5: SimpleKEvent Fields 37
Table 6: SimpleKEvent Type-characterization Variables 38
Table 7: SimpleKEvent Constraints 44

 iii

1. Executive Summary

1.1 Project Overview

The ABC Testbed project spanned the period from April 2000 to August 2001. The project
began as part of the DARPA Information Assurance and Survivability (IA&S) program and
concluded as part of the DARPA Ultra*Log program. The project focus was to contribute
experimentation methodologies and software tools for the understanding of composed,
distributed systems with a particular emphasis on enhancing the survivability of these systems.
The idea behind the ABC Testbed effort was to capture the state of such systems and to visualize
this system state in a manner that provides intuitive understanding of system behavior. This work
was performed under Contract No. F30602-00-C-0082 with the Air Force Research Laboratory,
Rome Research Site.

The ABC Testbed project culminated with the first delivery of the Cougaar Society Monitoring
and Analysis Reporting Tool (CSMART). The CSMART product was published to the Cougaar
open source web site for distribution to the Cougaar user community. CSMART enables
Cougaar component developers and systems integrators to configure, execute, and analyze
Cougaar agent societies with innovative visualization and automated configuration capabilities
not previously available. Although CSMART was not the original intent of the ABC Testbed
project, the ABC project contributed the basic foundations of CSMART. These foundations,
especially exploration of system behavior through experimentation and user-driven visualization,
were the initial pursuits of the ABC project and the ABC Testbed tool.

Cougaar is a large-scale agent architecture project that originated under DARPA, and has been
made available to the general public through open source licensing. Cougaar provides developers
with a framework to implement large-scale, distributed agent applications with minimal
consideration for the underlying architecture and infrastructure. The Cougaar architecture uses
the latest in agent-oriented, component-based design and has a long list of powerful features.
Further, numerous leading edge technologies have been incorporated into the architecture that,
we believe, puts this technology at the forefront of emerging agent architectures.

The DARPA Ultra*Log project is to extend Cougaar to become “survivable” while operating in
chaotic wartime environments. The project is pursuing the development of technologies to
enhance the security, robustness, and scalability of large-scale, distributed agent-based systems
operating in adverse environments. The result of layering Ultra*Log technologies with the based
Cougaar architecture will achieve a comprehensive capability that will enable a massive scale,
trusted, distributed agent infrastructure for operational logistics to be survivable under the most
extreme circumstances.

 1

1.2 Final Product Overview

CSMART is an integrated toolset for building, running, monitoring, and analyzing regular
Cougaar societies, and for performing experiments on those societies by systematically varying
their properties and comparing the resulting behaviors. CSMART users will likely include
Cougaar component/PlugIn developers as well as researchers interested in understanding
Cougaar societies and mechanisms.

CSMART tools work within the Cougaar agent architecture to relieve developers and researchers
from the myriad of details associated with editing configuration files, marshalling and
controlling a set of host machines, distributing software, monitoring a running society, collecting
data, invoking analysis applications, and identifying and saving the results. CSMART tools
allow these users to concentrate instead on creating, measuring, and visualizing the behaviors of
large-scale, agent systems while minimizing the complexities of specifying and constructing
such agent societies.

The development of CSMART has focused on supporting the following activities:

• Configuration and control of abstract, regular Cougaar agent societies

• Performance monitoring of Cougaar agent societies

• Scalability and survivability analysis of Cougaar architecture/societies

• Providing an extensible base for adding new society specification, metrics, and
monitoring tools

The CSMART methodology of performing experiments on simulated systems facilitates
powerful research approaches. The most common and perhaps most powerful technique is to
perform trade-off studies. Researchers can quickly re-execute experiments with slightly different
initial conditions or with models of different fidelity. For survivability studies, researchers can
perform multiple sets of trials, varying parameters of defense mechanisms, application
configuration and topology, or types of attacks. The tools allow researchers to quickly define and
run a set of trials; CSMART automatically collects the data, matched to the setup configuration,
for later analysis.

CSMART includes a suite of visualization tools that provide developers and researchers insight
into a society. Figure 1 illustrates several views that visualize the topology of the society, the
relationships formed between agents during planning and execution, and the metrics generated
by agents within a running society. Interfaces are included to transfer collected metrics to other
specialized analysis tools for further investigation.
The need to accommodate large-scale societies requires that the visualization tools be capable of
focusing and controlling the user's view. The tools can filter the data retrieved from a running
society (for example, by focusing on selected communities or a restricted set of functional

 2

relationships) and aggregate information for display to the user (for example, by abstracting the
intermediary steps along a path). In addition, linkages between metric and topological views
foster an incremental exploration of the society (for example, moving from metrics to related
agents, or following threads formed by particular Task flows).

Figure 1: Example Views Illustrating System Behavior

 3

2. Introduction and Project History

2.1 Initial IASET Goals
The ABC Testbed project began as part of the DARPA Information Assurance Science and
Engineering Tools (IASET) program. IASET was one of six areas of the DARPA Information
Assurance and Survivability (IA&S) program. The objective of the DARPA IASET program was
the creation of science-based metrics, methodologies, and tools for the implementation of
assurance in information system design and assessment processes. This program sought to
overcome inherent deficiencies in the present processes in order to address assurance
considerations with a true “system-level” viewpoint. Program achievements were to lead to
more robust and secure systems that could be developed more rapidly, and have lower life cycle
costs. ABC focused on developing a testbed for the implementation of assurance in information
system design. In addition to developing the testbed, the ABC effort focused on validating the
testbed’s performance and usage methodology by developing IA component models and
conducting experiments, as well as assisting others in conducting experiments.

The ABC Testbed and toolkit employed agent and component-based technologies to simulate
and analyze IA behaviors. In this testbed, all entities of a data configuration are modeled as an
independent agent whose detailed behaviors are modeled by a set of PlugIn modules. In such an
environment, IA&S researchers could perform experimental analysis of different IA attack and
defense strategies. Our goal was to demonstrate that the ABC Testbed provides not only a
powerful and flexible tool for analyzing the security vulnerabilities of various configurations, but
an efficient approach to the development and maintenance of such configurations.

The ABC Testbed intended to provide the following benefits:

• Analysis of complex interactions of multiple attacks and defenses, whether coordinated or

independent, through the emergent behavior of composed entities
• Analysis of down-stream vulnerabilities triggered by induced “minor” vulnerabilities
• Allocation of model development across distributed groups with particular algorithms and

capability expertise through a PlugIn component architecture
• Leverage existing and emerging IA&S models by capturing mixed-fidelity models in PlugIn

modules
• Reduce experiment setup and integration time and costs by generating standard

experimentation configurations and PlugIns that can be reused in multiple experiments
• Provide modeling and analysis of multiple hypotheses in a controlled experiment to measure

the effectiveness of IA&S techniques in dynamic environments
 Provide precise specification of non-intrusive instrumentation •

 4

2.2 Ultra*Log Goals
With the reorganization of the DARPA Information Assurance and Survivability (IA&S)
program and the abandonment of the IASET goals, the ABC Testbed project became part of the
DARPA Ultra*Log program. Since the ABC Testbed was built on the Cougaar architecture, the
Ultra*Log program was a natural fit as the ABC techniques for system experimentation and
understanding could be focused on Cougaar system developers. As a result of this project
redirection, the ABC Testbed was now focused on the creation of tools to stress and understand
the behavior of Cougaar agent societies (rather than simulate arbitrary systems). In addition to
developing these tools, the ABC Testbed attempted to validate tool performance and usage
methodology by developing Cougaar component models and conducting experiments, as well as
assisting other Ultra*Log developers in using our tools and conducting experiments.
The ABC Testbed and toolkit employed agent and component-based technologies (based on the
Cougaar architecture) to simulate and analyze the behaviors of large-scale, composed systems
with a focus on information assurance and survivability. As a part of the DARPA Ultra*Log
program, the ABC project focused on:

• representing cyber attack events and physical disruptions of both consequential and
malicious forms

• simulating the enormous complexity of an Ultra*Log system situated in a chaotic but
realistic operational environment

• providing an environment in which to understand, measure and validate survivability
techniques in an Ultra*Log system.

2.3 Implementation Phases
As a result of the ABC project redirection and its switch from the DARPA IASET program to
the DARPA Ultra*Log program, the project design and implementation efforts were divided into
two distinct phases.

• Phase 1 included the period of performance under the DARPA IASET program. During
this period, the primary emphasis of the ABC project was on the simulation and
exploration of distributed, heterogeneous systems with a focus on information assurance.
To this end, the ABC Testbed employed the Cougaar agent architecture to develop a
distributed simulation capability. In addition to the simulation testbed, the ABC effort
developed an experimentation methodology and a set of powerful visualization tools for
understanding the behavior of systems executed by the ABC Testbed. This phase
culminated with the execution of a cyber attack on an information system emulated by
the ABC Testbed.

• Phase 2 included the period of performance under the DARPA Ultra*Log program.
During this period, the primary emphasis of the ABC project was on creating tools to
automate the execution of Cougaar societies under stressful operation conditions. In
addition, the project developed tools to capture and visualize Cougaar agent behavior to
understand the impact of the operating conditions on these Cougaar agent societies. This

 5

phase culminated with the initial release of the Cougaar Society Monitoring and Analysis
Reporting Tool (CSMART).

2.4 Organization of This Document

Section 1 provides an Executive Summary of the project objectives and the final CSMART
product. Section 2 (this section) provides a summary of the project goals, the transition from
IASET to Ultra*Log, and the project development focus. Sections 3, 4 and 5 detail the ABC
Testbed phase of the project including our experimentation approach and the ABC Testbed tool.
Sections 6 and 7 focus on the usage and capabilities of our CSMART tool. Section 8 describes
our visualization approach and products incorporated into the ABC Testbed and CSMART tools.
Section 9 describes our external impact modeling approach and the capabilities developed for the
ABC Testbed and CSMART tools. Section 10 concludes the report with a discussion of future
work.

 6

3. ABC Testbed Experimentation Methodology

The ABC Testbed provides a simulation and analysis environment, with an initial focus on the
information assurance domain that combines modeling and experimentation. In this Testbed,
independent agents, whose detailed behaviors are modeled by “PlugIn” modules, represent all
aspects of system behavior. Each model includes the fidelity necessary to represent the behaviors
of interest. Execution of these models produces a detailed, time-based Event Graph that captures
both the course of actions executed by modeled system components and the evolving state of
modeled system resources. For exploration and understanding of IA characteristics associated
with these systems, the ABC Testbed provides tools for visualization and analysis of the Event
Graph data.

The major output of an ABC experiment is a comprehensive Event Graph comprising all
relevant actions of simulation entities and state histories of system resources. Example action
events include requests for file access or requests to open/close a firewall port. Example state
histories include the opening/closing of a firewall port or the escalation of policy. The Event
Graph represents all relevant information for experiment comparison, for experiment control and
“what-if” analysis, and for analysis tools that facilitate understanding system behavior.

In addition, the Event Graph explicitly represents the cause-and-effect relationships as computed
by the behavioral models (PlugIns). PlugIns specify all the previous events that are causes for
each event that they publish, as part of the event data structure. These are the “little whys,” each
of which is important. Together, these references and events comprise a causal network or graph
of events. The combination of these individual explanations and the visualization of the “big
picture” leads to an understanding of the security aspects of the system as a whole. This
approach allows the researcher to make conclusions about the merits of the particular IA
technique or component being evaluated.

As appropriate for a scalable distributed system, the data behind the Event Graph is distributed
across the agent society. Each agent contains appropriate local segments with links to other
agents that maintain cause and effect relationships. This information allows either dynamic or
post-processing of these events to develop the metrics appropriate for understanding system
behavior.

By executing models of suitable fidelity, we produce data that varies only according to the
factors of interest, limiting the data and simplifying the analysis. By collecting comprehensive
data on the actions and behavior of individual components, as well as the reasons for each
individual action, we create a comprehensive collection of data on the behavior of the distributed
systems, along with data on “why” the system behaves as it does. IA researchers can then
investigate the workings of these systems and their IA or survivability attributes in particular, by
analyzing the Event Graph.

 7

While we recognize that models can never be accurate enough for formal validation of the
security of a system, our focus is on directed research to understand system level behaviors and
component interactions. One method of incorporating additional fidelity with minimal effort is
to incorporate actual software components in place of more limited fidelity models. However,
this diminishes the researcher’s control over the experimental results. These issues are typical of
any simulation-based analysis. Thus, we intend to complement live experimentation with ABC-
based experimentation, not replace it.

In addition, modeling within the ABC Testbed can amplify the value of live experiments both
before and after the live runs: modeling beforehand allows experimenters the luxury of dry-runs
to ensure that the data that is being gathered can answer the questions that motivate the
experiment. After an experiment has been run, data from the experiment can be used to tune the
model, which can, in turn, be used to simulate many variations on the experimental situation,
which variations were too expensive to try live.

 8

4. ABC Testbed Description

The ABC Testbed employs a novel architectural approach to support distributed simulation. For
our infrastructure, we use the open source Cougaar agent architecture. As we are focused on
simulating large-scale, distributed systems, our infrastructure is an inherently distributed and
scalable system. In addition, an agent-based architecture such as this provides a natural metaphor
for modeling the behaviors of systems in a distributed manner. During the course of simulation,
we can study the effects of the actions of the attack and defense mechanisms on the underlying
system behavior. Because we are using a simulation environment, we can measure and log all
aspects of performance in order to explore and understand the behavior of large, distributed,
heterogeneous systems without compromising the performance of the modeled components.
The ABC Testbed utilizes a number of important Cougaar agent architectural features to enhance
the simulation and investigation of the behavior of large-scale, distributed systems. The ABC
Testbed builds upon the basic Cougaar architecture to provide the following capabilities:

A PlugIn-based component model: Within the ABC Testbed environment, all entities modeling
behaviors or processes are considered “PlugIns.” PlugIns encapsulate all domain aspects of the
simulation, including modeled system behavior, wrapped actual software components (software
in-the-loop), and human interactions (human in-the-loop). PlugIns are responsible for
communicating their actions (as Events) as well as “why” they performed such actions. PlugIns
adhere to a consistent API and object model that enables the composition of agents with arbitrary
capabilities. A set of PlugIns comprises an agent and provides that agent with its particular
behaviors and capabilities. For example, with a set of attack, telnet, detector, and firewall
PlugIns, an investigator can construct experiments that analyze the deployment of distributed
sensors or that analyze the effects of detector latency.

Distributed, virtual Event Graph: PlugIns interact with the local agent blackboard through a
publish/subscribe mechanism. Each PlugIn subscribes to events of interest, and then responds to
these events (or a pattern of events) by publishing a subsequent event (or pattern of events).
ABC events are different from “external” events and they represent only the manifestation of
“external” events within the components and assets of the simulation environment. PlugIns
indicate the causal relationships (when possible) of all the events that they publish, as references
to other events. Thus, the Event Graph (which represents the collection of all simulation
information) forms a directed a-cyclic graph (DAG) and encompasses the collection of local
agent blackboards across the society of agents. This Event Graph information can become large
and possibly intractable for a single computer. As the agents represent “self-sufficient” compute
entities, the agents can be distributed over an arbitrary number of computer platforms (one to a
computer, at the limit) without incurring additional modeling work.

A composable object model: Our approach employs a hybrid class hierarchy and composable-
object representation paradigm. In a composable object-based representation, one is concerned
with the characteristics of an entity (what does it do) rather than the type of the entity (what it
is). For example, the representation of software or applications as part of a system is difficult

 9

(possibly intractable) as there are many types and variations on those types. Consider a firewall
application. One instantiation might contain http and ftp services while another instantiation
could contain ftp and ssh services. In addition, these firewall applications could be developed by
different vendors and possess different properties. Using a composable object-based
representation, one could enumerate an application class with a PortService property group or
more specifically, a FTPPortService and a HTTPPortService. Another advantage of this
approach is that the developer can dynamically instantiate objects with new or additional
capabilities without recompiling the system – a great advantage in a world that is ill-defined and
rapidly evolving.

Mixed-fidelity modeling support: To support the simulation and investigation of large-scale
systems without incurring an immense modeling effort, our simulation construction and model
approach specifically supports mixed-fidelity modeling. Our simulation paradigm comprises the
modeling of a small set of high-fidelity components to support the specific investigation or
hypothesis in conjunction with lower-fidelity models to provide the surrounding behavior of a
large, distributed system. In this manner, actual software components can be incorporated into
the simulation environment (as high-fidelity PlugIns).
While the Cougaar architecture provides us with an underlying agent infrastructure, it is an
infrastructure that is optimized for performance with respect to the logistics domain, where the
situation is constantly changing and time constants are relatively long. For this environment, the
Cougaar architecture design is inherently asynchronous and non-deterministic – there is no
consistency of asset state nor ordering of message delivery. While this is acceptable (preferable
from a performance perspective) in the logistics domain, it is not acceptable for a simulation
environment where repeatability is of prime importance. Thus, we re-implemented some of the
core Cougaar components to achieve repeatable and deterministic behavior. These
implementations include a new PlugIn base class (to abstract PlugIn mechanics from the
modeler), object queue managers, and asset manager components to synchronize all PlugIn
actions, asset state changes and message propagation.

 10

5. ABC Testbed PlugIns

As we implemented the ABC Testbed system, we performed a series of experiments to validate
our approach and implementation. For validation, we selected a previously conducted “live”
experiment that employed a traditional red-team approach, and emulated this experiment within
the ABC Testbed. By successfully modeling the significant system components and executing
our models, we produced results consistent with those produced in the live experiment. In
validation experiment, an attacker exploits a known weakness in the Pluggable Authentication
Module of RedHat Linux 6.0 to gain root access to a system (the “pamslam” attack, CVE-2000-
0052, published 1/4/2000). The attack used an automated attack tool, which was configured to
make repeated attempts to gain root access until either it was successful or the number of
attempts exceeded some limit beyond which visibility and risk of exposure was too great.

Figure 2 illustrates the experimental configuration. There were three hosts, modeled by three
ABC agents: the Attacker, the Victim, and an intermediate Firewall. Each agent contained a few
PlugIns, each modeling a specific software component executed during the AIA-001 experiment
(e.g., telnet). The attacker script used telnet to access the Victim using a known account, built the
attack script, and executed it. The detector on the Victim looked for the beginning of this
sequence, waited the prescribed latency period, and then performed the appropriate response.

Attacker
A ttack T ree
N avigator R outing

T elnet
C lient

F irew all

R outing

V ictim
T elnet
S erver

O S

R outing

D etector

P lugIn m odels softw are
com ponents

C lusters m odel hosts

“ login”

“log in
successfu l”

“ login”

Figure 2: Validation Experiment Configuration

This experiment employed a number of PlugIns associated with the aforementioned agents
(modeled hosts). These PlugIns are described below.

5.1 Attacker Agent PlugIns
The following PlugIns implement the behavior characteristics of the Attacker Agent.

 11

• The Attack Tree Navigator PlugIn is responsible for modeling the attacker. This PlugIn
will be the primary driver of the scenario. The PlugIn will load an attack tree into
memory and navigate the tree to perpetrate the attack. The attack tree will contain all the
data that will be necessary to form the commands (traffic events) that will be sent to the
victim machine to gain root access. Since the AIA 001 experiment had a fairly simple
attack tree (it was a single scripted attack) we will encode the necessary information in an
XML file that will be interpreted at runtime to produce the attack tree. The Attack Tree
Navigator will step through the states of the tree as it receives responses back from the
victim host.
As these attack• s are perpetrated using the “telnet protocol,” a telnet client will be

t’s

e

• The Routing PlugIn will be common to all the agents in this experiment. It is responsible

is

5.2 Firewall Agent PlugIns
t the behavior characteristics of the Firewall Agent.

• Like the Routing PlugIn in the attacker host, the Routing PlugIn in the firewall will be

• The Detector PlugIn will look for anomalous behavior in the traffic and direct action by
l

• The optional Filter PlugIn will provide a layering of traffic filtering based on a rule set. It

modeled. The Telnet Client PlugIn will maintain the “session” with the victim hos
“telnet server.” As such it will wrap the remote commands and pass them along to the
remote host via the routing PlugIn. This action can be thought of like the TCP/IP stack
that adds and removes headers as packets are sent and received. This PlugIn will also b
responsible for assigning session IDs to the outgoing sessions so the remote host can
reference them for its remote work.

for understanding how to “route” the modeled traffic from source to destination. In the
Routing PlugIn, the routing table will be simple. If the destination is on its own “LAN,”
the Routing PlugIn will “address” the traffic to the destination host directly. If it is not,
the traffic will be routed to the default gateway, which in this case is the firewall. For th
experiment, topological adjacency will likely be configured with the agent’s Routing
PlugIn and loaded via a configuration file. Future versions will likely be able to
determine adjacent hosts via some discovery mechanism, or address scheme.

The following PlugIns implemen

responsible for routing traffic passed to it. The routing table will be static and loaded at
run time. It describes the routing between the two networks that the firewall borders.

sending events to the Filter PlugIn (adding a new filter) or Session Manager PlugIn to kil
an active session.

will likely intercept traffic messages before they are handled by the Routing PlugIn. The
actual interception may be handled coincidentally with the routing. The Routing PlugIn
may change its routing plan based on data from this Filter PlugIn.

• The optional Session Manager PlugIn will manage the existing sessions being conducted
through the firewall so that sessions can be killed at the firewall.

 12

5.3 Victim Agent PlugIns
The following PlugIns implement the behavior characteristics of the Firewall Agent.

• The Telnet Server PlugIn will accept telnet events from the remote host and translate the
contained commands into events for the OS PlugIn to consume. The Telnet server will be
responsible for terminating the sessions either upon exit initiated by the remote host or by
a forced termination by the detector.

• The OS PlugIn is responsible for accepting commands from the remote host and
returning results. The OS PlugIn will also emulate file management functionality. As the
attacker agent adds files, this PlugIn will update the file system state to reflect those
editions. This PlugIn will also respond to queries for the contents of a directory (e.g., an
“ls” command) and commands to modify file state (e.g., read/write permissions).

• The Detector PlugIn, will be looking for the anomalous events that indicate an intrusion.
Like the detectors in the live experiment, these detectors will be specifically configured
to detect the detectable events as they happen and react after the designated latency. The
PlugIns will then direct the response to either kill a session or kill a session and remove
the files placed on the host by the attacker. The Telnet Server PlugIn and OS PlugIn will
execute these requests.

• The Routing PlugIn is as described in Section 5.1.

 13

6. Overview of CSMART

With the association of the ABC project with Ultra*Log, the ABC project focused on the
development of CSMART capabilities. The CSMART tool suite is organized in a framework
that reflects a particular model of how they are used and how they fit together. Initial users
include developers who are interested in testing, debugging, and validating their code. (Is the
society configured properly? Is my PlugIn working? Do the agents behave as intended?) Other
users include researchers interested in investigating society behaviors (What behaviors manifest
in the society? How does it respond to external events? How does it respond to changes in the
configuration of the society or to changes in the parameters associated with individual agents?)

6.1 Concept of Operations
The CSMART tool suite is designed to facilitate building, running, monitoring and analyzing a
society. The framework uses many terms already familiar within the Cougaar community
(society, host, node, agent, etc) and introduces some additional notions to help bind together the
tools and their operation into coherent flow. A workspace is provided to organize configurations,
resources, data, and other components of an investigation. It is modeled on a file browser with
hierarchical folders and typed documents. CSMART’s term for the object of the investigation is
the experiment. An experiment is a collection of one or more trials related by systematically
varying some aspects of the definition of a society or the environment in which the society is
run. A trial is a fully specified (executable) and instrumented Cougaar society, and forms the
basis for monitoring and data collection. Completed trials retain the definition of the society, the
context in which it was run, and the data collected during the run.
CSMART provides a GUI for users to interact with visual objects that represent experiments,
trials, societies, hosts, nodes, and other components. The GUI is organized around the following
sequence of activities:

1) Build a society from a predefined template by specifying properties that determine its
topology and the behavior of its agents and their PlugIns. For an experiment, some properties
will be left unspecified at this stage.

2) Build an experiment around a society by specifying any remaining values. The set of
properties and n umber of values for each property determine the number of trials in the
experiment. An experiment also includes specifications for impacts and metrics. Impacts are
external events—cyber attacks, kinetic events—that unfold while the society is running.
Metrics refers to data collected while the society is running, that will be used for later
analyses.

 14

3) Install the experiment on a set of hosts by assigning agents to nodes and nodes to hosts,
thereby committing actual computing resources to the experiment. Once this assignment is
complete, start the experiment, which successively installs each trial configuration and starts
the society. The status of each node (running, stopped, crashed), its time history of activity,
and its transcript is available to monitor the progress of the experiment.

4) Inspect snapshots of the running society. Tools for interrogating the society allow the user to
visually examine its organizational structure and the relationships that arise among its agents
in the form of a directed graph whose “links” correspond to relationships and “nodes” to
agents. Different views emphasize community structure, superior-subordinate relationships,
individual Tasks, and planning decisions. These snapshots rely on information retrieved
directly from the Cougaar blackboard.

5) Review data collected during a trial for later analysis. Once a trial has ended, and the society
has stopped running, only data computed by its defined metrics are retained. The metric data
are copied from the hosts and saved in the user’s workspace automatically. Optionally, this
data can be retrieved from the nodes while the society is running to monitor its behavior.

6) Compare trials by reviewing the saved metric data and any snapshots taken while the society
was running. CSMART will maintain the association between the data and the definition for
each trial, which includes the conditions under which it was run.

6.2 CSMART Experiment Components
CSMART uses several terms to describe the components which you build using the CSMART
tools. Societies, Experiments, Impacts, and Metrics are the components that you build, configure,
and manipulate using CSMART.

6.2.1 Societies
For CSMART purposes, a society is a collection of Cougaar agents, grouped into one or more
communities. Societies are constructed from a template, and then parameterized to fully specify
the desired communities, agents, and PlugIns. Currently, two society templates are included: an
ABC society (developed under the ABC project effort) and a scalability society (developed
under the ALP project effort). The Configuration Builder is used to tailor a society.

6.2.2 Experiments
To run a society, it must be included in an experiment. An experiment is made up of one or more
trials. Trials are constructed by specifying the variation of experiment parameters, e.g., a PlugIn
parameter, selected agents to run, impacts executed, the distribution of agents to nodes or nodes
to hosts. For each trial, there may be some results – statistics about the run that are collected by
one of the specified metrics.

 15

6.2.3 Impacts
An impact is an external effect you wish to impose on a running Cougaar society. For example,
loading the network with background traffic, killing nodes, telling the system some inventory
has been lost, etc. These impacts might be real (really loading up the network), or simulated (via
a Binder on the agent or the MessageTransport service). CSMART allows the user to specify that
certain impacts should be included in a given experimental run.
ABC impacts are simulated cyber attacks on the cyber resources of the Cougaar society. They
are specified by editing an XML file, and, then, specifying that file in the File Chooser when
prompted.

6.2.4 Metrics
A metric is a set of run-time performance statistics about the running society, which you wish to
collect. CSMART allows you to add one or more to your experiment. Examples include average
and peak CPU utilization, total number of tasks in the agent blackboard, etc. Currently, both
available societies always include a fixed set of metrics. The frequency of sampling however is
controlled from within the Society Configuration tool.

6.3 CSMART Tool Suite
The CSMART Tool Launcher is the primary interface to CSMART, and integrates the various
CSMART tools. From this interface, users create societies, experiments, metrics, and impacts.
They then use the various tools to configure, run, monitor, and analyze Cougaar societies. The
CSMART tools are displayed across the top of this window, as pictured in Figure. These tools
are generally used in left-to-right order. The tools and their functions are:

• Configuration Builder: Edit society properties, such as the number of agents, or
parameters for a given PlugIn.

• Experiment Builder: Put together the pieces of an experiment, by adding a society to it,
and one or more impacts or metrics. In the future, this will be the tool for constructing
multiple trials, varying parameters of your society, to understand some behavior in more
detail. To run a society, you must include it in an experiment.

• Experiment Controller: Assign agents to nodes and nodes to hosts. Then, run, stop or
abort the experiment, and display output from the experiment.

• Society Monitor: Examine a running society (or saved data from a previous run), by
looking at the contents of its blackboard. Display graphs of agents and plan objects, and
some simple metrics. This tool may be run stand-alone for use with non-CSMART
Cougaar societies.

• Performance Analyzer: Display metric results from an experiment in progress, or a
completed experiment.

 16

For a comprehensive description of the CSMART tool suite, instructions on how to use the tool
suite, and use case examples, please refer to the CSMART User’s Guide.

Figure 3: CSMART Tool Launcher, with Workspace Organizer

 17

7. The ABC Society and PlugIns (Behavior Models)

7.1 ABC Society Overview
The ABC society was designed to model simple customer-to-provider request chains in a multi-
agent society. In this society, the PlugIns use the planning language of Cougaar, such as Tasks
and Allocations, but abstract away the complexities of the GLM module and existing higher-
fidelity Ultra*Log PlugIns. A developer can use the ABC PlugIns to easily configure a large,
complex multi-agent society with complex agent interactions. This ABC society can then be
used to study agent support interactions and the effect of external impacts upon the society, such
as degraded communication paths. Typical ABC societies are constructed in an “hourglass”
topology. There are a number of customers injecting new demand (Tasks) into the system. All
these requests funnel through some smaller number of distributors, and, then, out to a larger
number of suppliers. These societies are representative of supply-chains and are particularly
interesting to study in the context of adverse external impacts.

The society is organized by communities, which pass tasks between them. Each community
comprises four agents. Two of these agents are Customers, which periodically inject new
demand Tasks into the system. They are supplied by a Provider1 that has some local asset
capacity. If that agent cannot fulfill the requests, they are allocated to the Provider2 within that
community. If the Provider2 cannot fulfill the Task locally, it allocates the Task to the Provider2
in another community, depending how the supply relationships have been established. This
society works in a purely execution mode: all tasks are matched against assets, and responses are
always given with high confidence eventually. In particular, tasks include deadlines for
completion, and often requests will fail due to the deadline being exceeded.

The primary PlugIns in the ABC society are Customers that generate new tasks, and Providers,
which allocate these tasks to local assets or delegate them to other agents. The generation
parameters and allocation rules are specified in customizable CSV (comma-separated-value)
“.dat” files which are read by the PlugIns. By creating “.dat” files and agent “.ini” files the user
can build large multi-agent societies without creating new Java-code or complex domain-specific
PlugIns. An additional benefit of the ABC PlugIns is that they model basic reallocation and
timeout-failures that model a robust society response to external impacts.

7.2 PlugIn Details
Most ABC PlugIns extend a “CSMART PlugIn” base class. This PlugIn provides some key
support utilities to the ABC PlugIns, such as access to the CSMART “object factory” for
creating ABC-specific data structures, logging support for detailed trace data, and utility
methods for time-delayed operations and timers. An example of a time-delayed operation is
“publishAddAt(Object o, long time),” which releases an Object to the agent Blackboard at a
specified time in the future.

 18

Four PlugIns comprise the modeled ABC domain in each agent:
• A Local-Asset-Builder PlugIn creates the local inventory assets using the CSMART

object factory. These assets are created when the agent is first loaded, and their properties
are specified in a “.dat” file. Currently the assets use a simple inventory design based
upon a “thermal-resource-model.” This model is conceptually similar to a well of water:
the inventory has a maximum capacity that is gradually replenished over time, and every
item consumed from the inventory has a fixed withdrawal quantity. The model
additionally associates a usage-time for the used asset – all these parameters are specified
in the “.dat” file and can be customized to model different inventory behaviors.

• A Customer PlugIn periodically creates new request tasks and injects them into its
agent. A “.dat” file that specifies the task verbs and release frequencies configures the
Customer. Task verbs are specified to have a particular verb (e.g. “Supply”) and a
deadline time by which this task must be either successfully allocated or failed. The
Customer also maintains a “Happiness Chart” based upon the success/failure rate of its
tasks, which is used by the CSMART metrics UI to summarize the Customer’s
interactions with the society.

• An Allocator PlugIn allocates the tasks to assets. A simple “.dat” file that configures an
Allocator rule table also configures this PlugIn. The rule table maps task verbs to asset
roles and is used by the Allocator to make its allocation decisions. When the Allocator
receives a task it either allocates the task to a local inventory asset or delegates the task to
a remote agent. An important function of the Allocator is to perform reallocations of
failed tasks and to maintain “timeout” information for all Allocations – if an Allocation
takes too long then the Allocator can cancel that Allocation and attempt to allocate to
another asset or agent. This behavior makes the society far more robust to external
impacts. Another responsibility for the Allocator is to propagate successful allocations
upward to the task originator and create failed dispositions for tasks it is unable to
allocate, either due to a task deadline or the exhaustion of its rule table.

• An Executor PlugIn handles allocations to a local inventory asset as created by the local
Allocator PlugIn. The Executor manages the local assets created by the Local-Asset-
Builder PlugIn. In particular, it examines the local inventory asset’s capacity, denies
allocations to empty inventories, and models usage-time for local assets (e.g. “Use of
asset takes 10 seconds”).

These four PlugIns do all the work in an ABC society, which makes the society behavior far
easier to understand than a high-fidelity GLM/Ultra*Log society with many (100+) PlugIns and
data structures. This simplicity will also allow us to extend these PlugIns to handle new
Ultra*Log survivability requirements, such as agent mobility and QoS network information
updates. As we require greater modeling sophistication, the ABC PlugIn suite can be enhanced
and expanded to capture additional behavior requirements.

 19

Three external-impact PlugIns model external attacks upon the ABC agents. Typically a society
creator would create one agent to generate all the external attacks – this agent is called the
“Generator” in the CSMART configuration builder. The second agent “transduces” the high
level attacks specified by the user in the XML file, into the InfrastructureEvents that are sent to
the individual agents. The three PlugIns responsible for this chain are:

• The Scripted-Event PlugIn loads the attacks and creates a high-level representation (see
the Event Modeling section for details). This PlugIn reads an XML file and creates high-
level CyberEvents and KineticEvents. An example of a CyberEvent is “Between 1pm and
2pm halt all Message I/O for agent X”, and an example of a KineticEvent is “At 5pm
bomb location Metropolis with a level-3 bomb”. Associated with these high-level Events
are models that define the low-level effects of the attack. The Scripted-Event PlugIn
creates these Events.

• The Transducer PlugIn converts high-level attacks to low-level attacks. The Transducer
listens for high-level Events generated by the Scripted-Event PlugIn and uses the attack
models to create low-level InfrastructureEvents. For example, a KineticEvent “bomb”
might translate into several Message I/O disruptions. The Transducer also maintains a
model of the geographic location for all the agents, which is used to translate
KineticEvent locations such as “15° Lat, 30° Long” to the agents in the vicinity of that
location. Lastly the Transducer sends these InfrastructureEvents to all affected agents at
the appropriate time.

• An ABC-Impact PlugIn is loaded into every agent in the society that you wish to
impact, and performs the low-level attack. This PlugIn listens for InfrastructureEvents
targeted at its agent and carries out the impact. To carry out message I/O impacts it uses
the wrapped MessageTransport Controller described later in this document.

Together these three external-impact PlugIns create and coordinate a simulated attack upon an
agent society, such as periodic network outages. A developer can use these PlugIns and the
attack XML script to investigate the domain reaction to these attacks without actually toying
with the network or worrying about complex machine setups.

Two infrastructure components assist the external impact implementation defined above:

• A LogicProvider (ImpactsLP) transfers InfrastructureEvents between agents. This Logic
Provider is loaded by the CSMART domain, and runs like a PlugIn. Its simple job is to
transfer InfrastructureEvents from the Transducer to the impacted agents.

• A Binder (SlowMessageTransportServiceFilter) assists the ABC Impact PlugIn. This
Binder is loaded into every agent and wraps the MessageTransport. With the
MessageTransport wrapped it keeps queues and timers to model degraded network
performance, such as a network disconnection for 10 minutes. The wrapper also imposes
a maximum throughput of input and output messages per second, which can be used to
model a low-bandwidth agent. Lastly the Binder provides the ABC-Impact PlugIn with a

 20

ntroller) that allows the ABC-
Impact PlugIn to carry out I/O performance degradations.

Controller service (SlowMessageTransportServiceProxyCo

 21

or Analyzing System Behavior

s a

ys. A

at
are

 acting in concert. In
eneral, the only way to discover this emergent behavior is to execute the software under various

,

 of

tions
r

ses for
ach

 The combination of these individual explanations and the
isualization of the “big picture” leads to an understanding of the individual system behaviors, as

or

ts with

8. Visualization f

8.1 Overview

Exploration and understanding survivability mechanisms for large-scale, distributed systems i
daunting task. Even capturing and visualizing behavior of such systems that are functioning
normally is a challenging problem due to its nature (large, distributed and composed). These
difficulties are compounded when assessing the performance of multiple security and recovery
mechanisms that comprise the survivability architecture for a large-scale, distributed systems.
This occurs because these components tend to interact in both intended and unintended wa
firewall may block the data that a detector needs in order to diagnose an attack. A trust-based
monitor may shut down a component and thereby cause an abnormal traffic flow. The IA
effectiveness of such systems depend on the survivability components interacting in the way th
they were intended and not in destructive ways, yet the interactions among these components
complex and often cannot be predicted by any tractable method. The success or failure of the
survivability system hinges on the emergent behavior of its components
g
conditions, record what transpires, and analyze the resulting behavior.

To this end, the ABC project has focused on scalable approaches for collecting information and
visualization tools for guiding and aiding the user in understanding the behavior of large-scale
distributed systems. As part of this approach, we have focused on representing the behavior
such systems as directed graphs and on providing the visualization tools to explore, compare,
and analyze this information. The directed graph explicitly represents the cause-and-effect
relationships as computed by the behavioral models and compute engines (i.e., PlugIns). For the
ABC Testbed, PlugIns modeled or encapsulated system behaviors and published all their ac
as causal events, as well as the reasons for taking these actions (as links to preceding events). Fo
Cougaar logistics societies, the workflow and task objects form a causal, directed graph of
system actions. In this manner, these PlugIns specify all the previous actions that are cau
each action that they publish, as part of the graph data structure. These are the “little whys,” e
of which is important. Together, these references and events comprise a causal network
representing the system behaviors.
v
well as for the system as a whole.

As appropriate for a scalable, distributed system, the data behind the directed graph is distributed
across the agent society. For large-scale distributed systems, no one computer can compute
maintain the magnitude of this data. Thus, each agent contains appropriate local segmen
links to other agents that maintain cause and effect relationships. These visualization tools
appropriately retrieve the particular information of interest as express by user gestures.

 22

Within CSMART, the Society Monitor tool displays the activities and data associated with a
distributed running Cougaar society. Figure 4 illustrates the view launcher for the Society
Monitor visualization tools. This data is obtained by collecting information from the contents o
each agen

f
t’s Blackboard, or from the results of specific metrics collection plugins (or by loading

saved graph or me
society.

trics data). This tool allows users to monitor any currently running Cougaar

Figure 4: Society Monitor Tool Launcher

Views within this tool communicate via the standard PSP interface with a running society. When
running under CSMART, the Society Monitor is enabled only when an experiment is running,
and automatically contacts the society in the running experiment. When running standalone, the
user is prompted for a URL in the running

 society. For developing the graph visualization tools,
we have built upon the open source AT&T GraphViz package, as well as contributed additional

 Th o

• Community View: The communities in the society and their relationships.

• w: The agents in the society and their relationships to each other.

 related to a
single selected object.

 r more calculated metrics as chart displays.

s to
ng

iew A), to a temporal plot of a
single variable (View B), to a display of the subset of events occurring during an observed
anomaly (View C), where View C is the Plan (Graph) View.

functionality to this open source product.

e S ciety Monitor currently provides the following displays:

Agent Vie

• Plan (Event) View: A directed graph of plan objects or events generated by the agent
society.

• Thread View: Drill down across the whole graph only displaying objects

• Metrics Views: Show one o

8.2 Navigating the Views
A researcher analyzing results produced by CSMART or the ABC Testbed begins with a high-
level summary of system behavior, e.g., a “quality of service” display or an agent/host metrics
display. From these summary views, the researcher identifies regions of interest, and navigate
the appropriate regions of the graph view. Figure 5 illustrates this navigation process, showi
how a user navigates from a tabular display of derived data (V

 23

View B

View C

View A

Figure 5: Navigation among different information displays

8.3 Community View

Figure 6: Community View for the ABC Society

 24

• The Community View illustrates the communities in a running society with their
relationships (the sum of the relationships of their agents). Figure 6 illustrates a
sample Community View from the ABC society (each community comprises 4
agents). The Community View is the highest-level summary graph of the
information flow across entities in the agent society. In societies of 100s of
agents, the Community View presents a view of the entire society with greatly
reduced clutter that can be useful in identifying communication flow patterns and
potential bottlenecks.

8.4 Agent View
The Society Monitor Agent View displays the agents in a running Cougaar society. Figure 7
illustrates an example of the Agent View. Each agent is labeled and color coded. Each agent is
linked to every other agent with which it has a relationship. A user may produce new graphs
showing only selected relationships or only the relationships for a particular agent. In addition to
the graphical attributes of an agent (e.g., name and relationships), a user can select a particular
agent and generate a dialog listing all the attributes of that agent.

• Figure 7: Agents View, Highlighting a Relationship

8.5 Plan (Event) View
The Plan View is the most detailed monitoring tool available. It illustrates the information from
the agent Blackboards (i.e., plan elements) as a causal (directed) graph. It can potentially return
every object from the Blackboards of all the distributed agents, and illustrate the relationships
among these objects. These plan elements represent the actions or behavior of the agents. For
understanding a particular interaction or result, this is the most powerful and detailed view of the
agent society behavior.
This view contains a number of features to help the user manage the complexity of Plan View,
which can grow to be very large (1000s of objects). Multiple windows can be opened on the
same graph to inspect disjoint portions of the graph. Subgraphs can be selected and copied to
other windows; and selection and highlighting are reflected in all windows showing the same
events. An overview window (bird’s eye view) shows the entire graph and provides a reference
frame for creating and identifying other views. Figure 8 illustrates a sample Plan View where
objects were collected from multiple agents (the objects are color coded by agent). Note that the
Plan View is laid out left to right, following the arrows from Tasks to Plan Elements to expanded

 25

Tasks. These links are causal, and are drawn to minimize link length and crossing (thus, the
layout does not reflect chronological order).
Manual interaction is only the first step in making the Plan View tractable as an analysis tool.
We have experimented with forms of filtering and transforming graphs to simplify the task of
detecting features in the causal relationships among plan elements.

8.5.1 Filtering
Typically, this view returns too much information (both to be useful, and to be handled
comfortably by the client machine). Therefore, users typically filter their query: by community,
agent, object type, some attributes of the objects, a time span, or other filter criteria.
Currently, users may choose to hide or ignore certain plan object types. Note that by “Hide”-ing
an object type, it is still retrieved and processed, merely not drawn. The transitive closure of the
links between nodes is drawn, with the edge shown thicker and darker as a reminder of the
missing nodes. When ignoring objects, they are not retrieved from the agent at all. Therefore, for
efficiency purposes, ignoring some object types is usually more useful.
Additionally, users may limit their query to some number of objects returned. Note that the set of
objects that is returned is arbitrary. Look at the output in the console for some indication of how
many objects were not returned.
In future, this view will support much more complex methods for filtering and finding, with
complex pattern matching and graph abstraction techniques.

8.5.2 Legend
Nodes in the Plan View are color coded, according to the agent from which they were retrieved.
Although this means that colors may be re-used, it does allow the user to quickly identify when
processing moves from one agent to another. For details on which color indicates which agent,
view the legend (from the “View” menu). Nodes are also different shapes, to indicate different
object types, as defined in the legend.

Figure 8: Plan View, displaying the distributed blackboard

 26

8.6 Thread View
The Thread View is a filtered version of the Plan View. By selecting a particular node (usually
from a Plan View), you may query up (“Ancestor”) or down (“Descendant”) its causal chain.
This produces a new Plan Graph, with only the specified objects. When viewing an ancestor
thread, only parent Tasks are displayed. When viewing a descendant thread, all objects that can
be reached by following links are displayed. Figure 9 illustrates a sample Thread View that
depicts all the “descendants” of the “Supply500MREs” task.

Figure 9: Thread View

The Thread View can answer the following questions:
• How was this Task satisfied?

• Who participated in the solution for this Task?

• What are the requirements associated with this Task?

• Who generated the requirements for this Task?

8.7 Graph Object Details Dialog
For each node in one of the graph views (e.g., Agent View and Plan View), double-clicking on
the node retrieves a set of attributes for that object. These are a sub-set of the attributes available
from the Blackboard. In future, this set will be tunable. Note that the “Find” button on this
window will scroll the main graph to the appropriate node (the node corresponding to the Details
Dialog). Figure 10 depicts a sample Details Dialog for a plan element from a Plan View graph.

 27

Figure 10: Details Dialog, Plan View

8.8 Metrics Views
Various run-time metrics may also be displayed from the Society Monitor. The Task Completion
chart is a stacked, bar chart that displays information about Tasks for particular agents within the
society. The displayed Task state is the society state at the moment the metrics button is pressed.
Figure 11 illustrates a sample Task Completion chart.

Figure 11: Task Completion Chart

The bar chart displays a bar for each agent within the society. Each bar consists of 3 sections:

• Completed Tasks – This is the total number of Tasks in the agent that have a high-
confidence Allocation Result.

• Total Unallocated Tasks – This is the total number of Tasks that do not have an
associated Plan Element within the agent.

 28

• Total Low Confidence Tasks – This is the total number of Tasks with a low confidence
(< 50%) AllocationResult within the agent.

At any point, the total bar length for each agent displays the total number of Tasks within that
agent. Note that bars may shrink during a society run, due to Tasks being rescinded.

 29

9. External Event Modeling

A key contribution of the ABC project was an investigation into modeling adverse real world
events and implementation mechanisms by which to stress the modeled system for analysis. In
the context of Cougaar society experiments, we define events as abnormal occurrences outside of
the agent system that affect its operation. In the context of information assurance experiments,
we define events as abnormal occurrences outside of the modeled system that affect its operation.
Examples might be explosions, failures of supporting equipment, intentional system
reconfigurations, cyber attacks, and unusual workload. Rather than attempting to produce an
ontology or catalog of all possible event types, we have developed a systematic method for
characterizing events in terms of their effects on a running society. This approach characterizes
events in terms of their basic behavior rather than their type. In fact, we have found that the set
of basic behavioral effects on a society is much smaller and much more manageable than the set
of all possible event types.

One benefit to running Cougaar experiments with CSMART (or the ABC Testbed) is to evaluate
system performance under stress or under adverse operating conditions. Therefore, we have
attempted to provide a method for defining events that focuses on their effects on the agent
system. We have limited our current work to modeling the cyber-effects of external events, that
is, their effect on the software and hardware of the system under test. While cyber-events
(attacks, system faults etc.) will have only cyber-effects, other kinds of events, such as kinetic
events, might have significant indirect impacts on the agent society by affecting the outside
world. These external effects might take two paths; effects on the operators of the system and
effects on the world that the system is monitoring and controlling (such as kinetic events that
have impact on the transportation infrastructure). This later sort of effect can produce system
loads that, in turn, may impact the system’s robustness.

In following this approach, we have developed an approach for describing events and tools for
emulating their cyber-effects in a straightforward, uniform way that offers promise for modeling
many events through the use of a few simple effect primitives.

9.1 Effect-based Modeling Concepts
In following this effect-centered approach to modeling events, we have applied the following
concepts:
• Event – An occurrence beyond the normal operation of a system, such as a power outage,

that will have an effect on a system. Also called a real-world event or an external event.

• Event Model – A description of a real-world event. An event model produces an impact that
it sends to a transducer.

• Event Class – A limited number of broad, effect-based categories under which event models
can be placed.

 30

• Transducer – A component of the simulation (typically implemented as a PlugIn) that
receives an impact from an event model and produces appropriate society-specific impacts
that it applies to the system.

• Effect – The response of a system to the specific impact of an event. Sometimes called an
infrastructure event.

• Agent – A course-grained component of the system that embodies system behavior.

• Infrastructure Hook – The aspects of an agent that receives a specific impact and
produces an effect based on that impact. These “hooks” are transparent to the agent
components such that the effects emulate naturally occurring system state. These “hooks”
are typically implemented as “binders.”

9.2 The Tools for Modeling Effects
CSMART (or the ABC Testbed) contains a set of tools that allows experimenters to define
events in terms of their effects. Using these tools, experimenters can devise experiments that
model a system’s reaction to those events. These tools include:

• A list of the important aspects of events that need to be specified in order to model that
type of event in an Ultra*Log simulation.

• A language for describing low-level impacts on modeled components.

• A language for describing how events can be expanded into impacts.

• Tools that support experimenters as they build and run system and event models.

9.3 Components of the Effect-modeling Process
9.3.1 Event Models, Classes, and Hierarchy
In our effort to define an ontology of events to classify real world activities, we have
implemented three classes of events: cyber attacks, kinetic events, and chaos (we have defined
chaos as a way to introduce colored noise models into the system). Of course, we expect this
ontology to evolve with additional effort and participation. These classifications are based on the
type of impact the event produces. For example a moving event (e.g., a hurricane) would have a
different impact model than a non-moving event (e.g., an explosion). Likewise, a cyber event
would have a different impact model than a kinetic event.

We have defined models for each class of event, or for some abstraction level of these events.
These parameterized models define the impacts of the external event in terms of time course,
geographic course, intensity, etc. We intend to provide a generic set of these models that IA and
Cougaar developers can extend. We are currently defining generic models for each event class.

 31

RealWorldEvent

CyberAttackEvent KineticEvent

SimpleKEvent MovingKEventDoSEvent ModificationEvent

Not implemented. Purely conjectural

Figure 12: RealWorldEvent Hierarchy

Figure 12 gives a simple event hierarchy. This hierarchy is expanded beyond our current
implementation to give a better understanding of the direction we are heading. The details of
these classes are given below.

9.3.2 Impact Models

Impact models are objects that simulate the impact of an event. Impact model objects implement
the ImpactModel interface (shown in Figure 13). Currently the classes are implemented as inner
classes to the real world event that utilizes them. Alternatively an entire ImpactModel class
hierarchy could be developed. The getImpact() method should return a collection (as an Iterator)
of unpublished InfrastructureEvents. These InfrastructureEvents should be made ready to publish
within the getImpact() method. This means that visibility time, causes and all other data
members should set, leaving only the job of publishing to the transducer. The cause of the
resulting InfrastructureEvents should be the RealWorldEvent itself.

Package org.cougaar.tools.csmart.ldm.event;

import java.util.Iterator;

import org.cougaar.tools.csmart.ldm.PlugIn.transducer.Society;

public interface ImpactModel {

 public Iterator getImpact(Society world, IEFactory theIEF);

}

Figure 13: ImpactModel Interface

 32

9.3.3 The Transducer
This component maps a description of an external event into a set of specific impacts that act
upon individual agents in the modeled society. The transducer uses knowledge of the society,
such as the geographic location of the agents and knowledge of the event types, to produce
appropriate specific impacts at the right times.

The transducer determines the state of the society and maintains it. When the transducer
receives a real world event it gets the impact model from the event and calls the
getImpact(society) method on the model with the society object, which is a single object
representing the society. This society state need only contain information relevant to making the
translation. Thus some coordination is required to ensure the proper state is maintained for the
collection of real world events that will be handled. A simple Society object is now in place to
handle the simple events we have implemented. In the future more complex real world events
may require modification to this object.

It is the responsibility of the transducer to understand the society enough to execute this
translation. For instance, an explosion whose location is given by a lat-long pair must be
translated to the Cougaar agents that are within some distance of the explosion’s epicenter (as
illustrated in Figure 14). The transducer in this case must be able to lookup agents based on lat-
long pairs.

Transducer

Agent X

Agent Y

Agent Z

Bomb at:
38° 51' N
77° 2' W

Node Down for
2 hours

Node Down for
7 hours

Node down for
1 month

Some
distance
away

A bit
closer

Very
close to
epicenter

Figure 14: Transducer Operation

 33

Decomposition is necessary on many levels depending on the type of real world event. It is
conceivable that a cyber event, such as a data trunk being severed, will need to be translated into
deg a sducer in this case would
have to understand the topology and routing used by various nodes to determine the correct
imp t.

Thus, the transducer component must:

• Translate the real world events into infrastructure events using the society state. This
t perpetrated.

As
classes will have to be handled differently based upon class member values, or the state of the

• The im pact.

odel from a
method on the event m for translation,

rad tion of communication service between certain nodes. The tran

ac

• Understand the state of the society for which it is transducing.

translation is very much dependent on the type of real world even

new event classes are added, the transduction process will get complex, as various event

society. To handle this, we divided responsibility for the transduction process as follows:

• The transducer will be responsible for maintaining society state.

pact model will contain the algorithm for translation of a particular event im

Figure 15 illustrates this transduction process. The transducer receives the impact m
odel. As such, the event model contains all the algorithms

lacking only the state of the system, which it obtains from the transducer.

Real World Event

Infrastructure Event

Infrastructure Event

Infrastructure Event

Infrastructure Event

Transducer
Pluginevent.getModel().getImpact(society)

Collection of Infrastructure events

Infrastru

Society State

cture Event

Figure 15: Transduction Process

 34

9.3.
Infrastructure hooks allow modeled agents to respond to the specific impacts generated by the

• Degrade or halt the processing speed (“node”) of an agent for a specified duration

d
,

ts or attacks occurring at the same time have a greater
umulative impact than a single event.

rating conditions for most
PlugIn binders and PlugIns. While these impacts are rather limited, they are able to emulate the

acks. As Cougaar survivability mechanisms
hese

re not intended to be available in the deployed Cougaar system.

 contribute in a number of ways to the enhancement of real world event
eneration and execution. Primarily, developers can extend the current set of Real World event

 breadth of capabilities. Developers can also develop new algorithms
in the form of PlugIns) for the creation of real world events, such as smart attackers and weather

ave currently

CyberAttackEvents are used to describe some nefarious action on behalf of some modeled cyber
attacker. At t level lude attacks,
destructive attacks, etc. As an initial simplification, we have focused on denial of service or
degradation of service attacks. Later, this type of attack may exist as a subclass of

4 Infrastructure Hooks

transducer. These hooks implement effects such as the reduction of CPU bandwidth or the
isolation of specific agents from the network.
The CSMART infrastructure supports infrastructure attacks and impacts that:

• Degrade or halt the network connectivity (“wire”) of an agent for a specified duration

The intensity of an impact can be between 0% (no impact) to 100% (halt). Impacts are targete
to a single agent and have a constant intensity for their specified duration. Impacts are additive
such that multiple external even
c

These infrastructure hooks are sufficient for emulating system-ope

impacts of a wide range of malicious and kinetic att
become more sophisticated, our implementations will have to accommodate emulating t
impacts in a manner such that they present standard information flow to Cougaar components
and survivability mechanisms.

Note: These infrastructure hooks will be available as a Cougaar architecture test mechanism and
a

9.4 Development and Usage Guidance
Developers can
g
types to allow for a greater
(
simulators. This section provides guidance to developers on the extension of real world events.

9.4.1 Current Extensions and Models
To aid the developer, below is an overview of the real world event classes that we h
implemented.

9.4.1.1 CyberAttackEvent

the highes , this may inc denial of service attacks, modification

 35

CyberAttackEvent, but currently does not. There are four types of cyber attack and those are
listed in org.cougaar.tools.csmart.Constants.RW

Table 1: Cyber Attack Types

EType and described in Table 1.

Constant Value Attack Description

Launch a denial of service against a single agen
Will re
entire node.

Launch a denial of service against a netw
This will result in a degradation of Inter-a
communic

DOSNODE “Dos Node” t.
sult in a degradation of service of the

DOSNET “Dos Net” ork.
gent

ation (message passing). Currently we
assume there is no more than one node per
network. In fact this is directed against an agent

erpreted as “launch a DoS
against the network this agent is connected to.”
and should be int

KILLNODE “ l result in a
termination of all node activity for a period of
tim

Kill Node” Bring down a host. This wil

e.

ISOLATENODE “Is
ination of

communication to and from the agent in
question.

olate Node” Bring down the network an agent is connected
to. This will result in a term

f a CyberA vent are show Table 2.

able 2: Cyb tack Event Fields

The fields o ttackE n in

T er At

Field Name Possible Values Description

Type (from
RealWorldEvent)

Constant from
Table 1Error!
Reference
source not

The type of Real World Event (in this case
attack type)

found.

target A string The name of the agent being targeted

duration A long: > 0 How long the attack will be perpetrated

intens gree at ity A double:
0.0 – 1.0

Level of intensity: translated to the de
which a system is degraded.

Because of some simplifying assumptions we have made, these events are translated very simply
into InfrastructureEvents according to Table 3. The current InfrastructureEvent types are given
in org.cougaar.tools.csm tants.InfEventTy lso listed in Table 3.

art.Cons pe and are a

 36

Table 3: CyberAttackEvents to Infrastructure Events

CyberAttackEvent Type InfrastructureEvent Type

DOSNODE NODE_BUSY

DOSNET WIRE_BUSY

KILLNODE NODE_DOWN

ISOLATENODE WIRE_DOWN

Thus the ImpactModel for CyberAttackEvents only does this simple translation to produce
Infrastructure events. The intensity and duration fields are copied directly without translation.

9.4.1.2 SimpleKEvent

impleKEvents are used to model kinetic events that do not move or vary in intensity over time.
Examples include bomb blasts and earthquakes. A list of the current modeled Kinetic Events are

Table 4: SimpleKEvent Types

Constant Description

S

given in org.cougaar.tools.csmart.Constants.RWEType and described in Table 4.

Value Kinetic Event

FLOOD d” d. “H2O floo A floo

BOMB “Bomb blast” A Bomb

f a SimpleKEvent re nearly iden

EARTHQUAKE “Earthquake” An earthquake.

The fields o a tical to those of the CyberAttackEvent and are
given in Table 5.

Table 5: SimpleKEvent Fields

Field Name Possible Values Description

Type (from
RealWorldEvent)

Constant from
Table 4

The type of Real World Event (in this case
kinetic event type)

location A LatLonPoint The location of the event.

A long: > 0 How long the event lasts Duration (TKE)

Intensity (I
KE
) A double: Level of intensity of the event. This has

0.0 – 1.0 special meaning to each event type.

The ImpactModel for SimpleKEvents is more complicated than that for CyberAttackEvents for
two primary reasons:

 37

• SimpleKEvents happen at a location on the globe and have radial impact. Thus they may
affect a number of agents depending on their global location.

• SimpleKEvents have significant recovery times beyond the duration of the original event.

A general solution is given here, and no claims are el to
accurately represent these types of kinetic events.

Each type of is char ed by the

able 6: SimpleKEvent Type-c es

Variable Name Possible Values Description

made to the capability of this mod

 SimpleKEvent acteriz variables in Table 6.

T haracterization Variabl

Max Radius

(Rmax)

Positive
Float (km)

The largest possible radius that an event of
this type could have.

Max Recovery Time Positive The time that an agent at the epicenter will

intensity
(Tmax recovery)

Long
(ms)

take to recover if the event is of maximum

A node to net
down ratio

)

Positive
float

Used to determine whether a node or its
network comes up first and at what ratio of
total recovery time of an agent. (α

n2n

irst determine which agents are affected by this kinetic event. A radius
 epicenter (the lat-long of the SimpleKEvent) will be determined using the following

effective) of the event is directly proportional to its intensity. Figure 16
ect of intensity on event radius.

The ImpactModel will f
from
formula:
Thus, the radius (R
illustrates the eff

 38

KEmaxeffective IRR ×=

maxR

Unaffected agents

Affected agents

Figure 16: Intensity’s Effect on Event Radius

Another assumption made by this model is that every agent affected by this event (that is, within
ective) will be down for at least the duration of the event itself (TKE). By “down”, we mean that

the both the network and node are down, not busy. In fact for this type of kinetic event, there is
no concept of node or network busy. Kinetic events of this type either take things out-of-service
or they don’t. Therefore, kinetic events are only translated into NODE_DOWN or WIRE_DOWN

Reff

InfrastructureEvents.

 39

D From Epicenter R effective

Figure 17: Agent Down time

Figure 17 represents the total down time an agent or network will experience due to a kinetic
e is calculated using the following formula:

event and that tim

effective

Epicenter FromeffectiveKErecoverymax
Duration KE R

)D -(R T
T

×Ι×
+

T

T max recovery x I KE

KE Duration

down =Τ

s mentioned above, we are transducing SimpleKEvents into both NODE_DOWN and WIRE_DOWN
nfrastructureEvents. So, what are the down times for each of these? That is determined by

t the
e:

A
I

the node to net down ratio (αn2n) mentioned in Table 6. If αn2n is less than one, it means tha
agent will recover before its respective network and the respective down times will b

 40

effectiveR
Epicenter FromeffectiveKErecoverymax n2n

Duration KEdown node

)D -(R T
T

×Ι××
+=Τ
α

effective

Epicenter FromeffectiveKErecoverymax
Duration KEnetdown R

)D -(R T
T

×Ι×
+=Τ

s greater than one, it means that the networIf αn2n i k will recover before the node and the

respective down times will be:

effectiven2n

Epicenter FromeffectiveKErecoverymax
Duration KEdownnet R

)D -(R
T

×

×
+=Τ

α
 T Ι×

effective

Epicenter FromeffectiveKErecoverymax
Duration KEnodedown R

)D -(R T
T

×Ι×
+=Τ

Figure 18 provides an example of a “down time” graph for a node-before-network recov

Network recovery:

ery.

R effective

T max recovery x I KE

Node recovery:
αn2n x T max recovery x I KE

T KE Duration

D From Epicenter

Figure 18: Node vs. Network recovery (αn2n < 1)

As you can see for each node affected by a kinetic event, two infrastructure events will be
produced with different duratio nd the other is a

IRE_DOWN event. Both events have the same visibility time. That is, the agent and network
will go down at the same time.

9.4.2 Creating ew Ev
When crea g ew Ev
mind.

ns. One is a NODE_DOWN event, a
W

 n ent Types
tin n ent types (either cyber or kinetic) the developer must keep a few things in

 41

• How t (PlugIn or script) describe the event? Does it have
dur o inten t? How is that target
described?

• How should the impact of the event be modeled? Does it have a radius? Does it affect
just one agent? Wh d as a result of it?

9.5
We have created a simple RealWorldEvent generation Plugin that reads a script and publishes
the real world events described within it. The Plugin is capable of producing both
Cyb A

9.5.1
The RealWorldEvents file is located in the appropriate “configs” directory and is titled (un-
orig a
(Docum nition), and the parser strictly enforces adherence to this DTD. When using
CSM be prompted for the XML events file
to use. CSMART will then handle putting this file in the necessary location for you. Figures 19
and 20 below present samples of the DTD and XML event specification, respectively.

 will the producing componen
ati n, sity, or some other parameters? Does it have a targe

at kinds of infrastructure events are produce

• What state needs to be available from the transducer for the ImpactModel to correctly
break the kinetic event into those events?

Injecting Real World Events into Cougaar

er ttackEvents and SimpleKEvents.

Editing Real World Events file

in lly) RealWorldEvents.xml. The format of this file is expressed in an inline DTD
ent Type Defi

ART to add an ABC Impact to your society, you will

<!ELEMENT EVENTLIST ((CYBER|KINETIC)*)>

<!ELEMENT CYBER (PARAM*)>
<!ATTLIST CYBER TARGET CDATA #REQUIRED
 TIME CDATA #REQUIRED
 TYPE CDATA #REQUIRED>

<!ELEMENT KINETIC (PARAM*)>
<!ATTLIST KINETIC LATITUDE CDATA #REQUIRED
 LONGITUDE CDATA #REQUIRED
 TIME CDATA #REQUIRED
 TYPE CDATA #REQUIRED>

<!ELEMENT PARAM EMPTY>
<!ATTLIST PARAM NAME CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

Figure 19: RealWorldEvent DTD

<EVENTLIST>

 <C T ctim”YBER ARGET=“Vi

>
 TIME=“100”
 TYPE=“DoS Node”

 42

 M ntensi 5”>< RAM> <PARA NAME=“I ty” VALUE=“0. /PA
<PARA NAME=“D n” VALUE=“36 </P

INETIC LATITUD ”
 NGITUDE

 M uratio 00”> ARAM>
 </CYBER>
 <K E=“0.0
 LO =“0.0”
 TIME=“150”
 TYPE=“Bomb blast”>
 <PARAM NAME=“Intensity” VALUE=“0.1”></PARAM>
 <PARAM NAME=“Duration” VALUE=“0”></PARAM>
 </KINETIC>
</EVENTLIST>

Figure 20: Example RealWorldEvent list

While the DTD and example may be enough to get started, some explanation should be made.

• Cyber and kinet

ic events can be mixed in the event list.

• The name of agents to attack in Cyber events must be the exact full name of the agent in

• logical ordering necessary. These events are all published at the

• n in

ype.

• PARAM names are case sensitive along with the type values. When in doubt, use the

Be e ay seem like a low intensity may
actually be a much larger event. Table 7 gives the maximum recovery and radii of the three event
typ w b
blasts –

Table 7: SimpleKEvent Constants

your society.

• Look at the example agent ".ini" files in csmart/data/ul-test for usage details.

There is no chrono
beginning of simulation time, with appropriate visibility times.

The TIME attribute will translate to the visibility time of the event and is give
milliseconds.

• The TYPE attribute must be a constant value from
org.cougaar.tools.csmart.Constants.RWET

• The event generation PlugIn only knows of “Intensity” and “Duration” as possible
parameters, because those are the only fields accepted by both CyberAttackEvents and
SimpleKEvents. However, it should not cause problems if others are present.

above example as a guide.

car ful when assigning intensities to Kinetic events. What m

es e are modeling. Keep in mind that these are worst case scenarios and in the case of bom
 nuclear detonations.

 43

Type Maximum Maximum recovery Node-Net Recovery
radius ratio

H2O Flood 150 (km) 864000000 ms
≈ 10 days

0.5

Earthquake 50 (km) 432000000 ms
≈ 5 days

0.5

Bomb Blast 15 (km) 315360000000 ms 0.5
≈ 10 years

10.
The l lanned tool and the
culm ndation for an extensible
too i
per m
such a foundation with defined usage patterns and appropriate GUIs. In addition, we have re-
implem ew
CSM

Highlig e CSMART capabilities include:

• an be easily tailored and executed for emulating large
Cougaar societies

• alization tools for analyzing Cougaar societies and understanding the
behavior of these societies based on data collected from the distributed agent

MART)

s the ability to analyze this data using

ies of agent connectivity

• Support for adding new PlugIns and for defining agents and other collections (e.g., an
agent is a collection of PlugIns)

• Support for saving and loading collections of components in an XML or database schema

• Support for tailoring metrics collection for each experiment

 Future Development
 re ease of CSMART (v0.3) represented an initial prototype of our p
ination of the ABC Testbed project. It focused on creating the fou

l su te for building, running, monitoring, and analyzing regular Cougaar societies and on
for ing experiments on those societies. At this stage of our development, we have created

ented the functionality of the ABC Testbed and ALP Scalability Tool within this n
ART framework.

hts of th

Template-defined societies that c

Powerful visu

Blackboards (executed using CSMART or executed externally from CS

• Metrics collection at the Node and Agent levels plu
CSMART internal tools or external tools.

We plan to deliver the next release of CSMART (v1.0) on 31 October 2001 and to continue
development through 2002. Prior to the v1.0 delivery, we plan a number of interim releases as
we complete functionality that would be useful to the Cougaar community. Highlights of
capabilities for our planned v1.0 release include:

• Support for defining a set of trials for an experiment by varying society parameters.

• Support for multiple topolog

 44

 45

trics collection with the Cougaar QoS Metrics Service (providing OS
cs collection)

 and operating conditions)

g or
le

ent of CSMART through 2002.
ighlights of capabilities for our planned v2.0 release (October 2002) include:

construction

• Constraint checking or closure analysis for society construction

• Society construction help provided by a wizard-like capability

• Generic PlugIns (expanders, allocators, and aggregators) tailored through XML rule files

• Topology variation across multiple trials

• Automated mapping of Nodes to Hosts, including variations across multiple trials

• Enhanced “external impacts” including DDOS attacks and location/time-course kinetic
events

• Animated playback of Society/agent processing including the overlay of time-varying
metrics on agent topology maps

• Scalable visualization techniques for societies comprising 100s of agents and 10,000 plus
graph nodes

• Scalable information retrieval for societies comprising 100s of agents

• Graph comparison and graph filtering techniques.

CSMART has proved to be a valuable tool for the exploration and understanding of agent
societies based on the Cougaar agent architecture. While our tools have been exclusively focused
on interacting with and interpreting data from Cougaar agent software components, we believe
that the experimentation techniques, visualization techniques and graphic user interfaces can be
extended to large-scale distributed, composed systems in general. To realize this generalization,
CSMART would need data collection and appropriate formatting of this data particular to each
new system of interest. In addition, one may wish to specify particular metrics for a new system.
Then, the full power and utility of CSMART can be used to gain insight into the behavior of new
distributed and composed systems.

• Integration of me
level metrics collection in addition to Node level metri

• Support for specifying and applying “impacts” (external events
for each experiment

• Support for visualizing agent societies and external impacts on geographic maps

• Support for managing configuration, experiment, and result information for repeatin
adding to a set of experiment trials and for regression analysis across multip
experiments.

As mentioned above, we anticipate continuing the developm
H

• Graphical specification and visualization of society

 46

11. References
CSMART User’s Guide, v0.3, July 2001, www.cougaar.org.

Cougaar Architecture Document, v8.2, July 2001, www.cougaar.org.

Helsinger, A., Ferguson, W., Lazarus, R., “Exploring Large-Scale, Distributed System Behavior
with a Focus on Information Assurance,” Proceedings of the second DARPA Information
Survivability Conference and Exposition (DISCEX II), Anaheim, CA, June 2001.

“Modeling the Effects of Events in Cougaar/Ultra*Log Societies,” ABC Project report, May
2001.

“Measures of Success,” ABC Project report, August 2000.

	1.Executive Summary
	Project Overview
	Final Product Overview

	2.Introduction and Project History
	2.1Initial IASET Goals
	2.2Ultra*Log Goals
	2.3Implementation Phases
	2.4Organization of This Document

	3.ABC Testbed Experimentation Methodology
	4.ABC Testbed Description
	5.ABC Testbed PlugIns
	5.1Attacker Agent PlugIns
	5.2Firewall Agent PlugIns
	5.3Victim Agent PlugIns

	6.Overview of CSMART
	6.1Concept of Operations
	6.2CSMART Experiment Components
	6.2.1Societies
	6.2.2Experiments
	6.2.3Impacts
	6.2.4Metrics

	6.3CSMART Tool Suite

	7.The ABC Society and PlugIns (Behavior Models)
	7.1ABC Society Overview
	7.2PlugIn Details

	8.Visualization for Analyzing System Behavior
	8.1Overview
	8.2Navigating the Views
	8.3 Community View
	8.4Agent View
	8.5Plan (Event) View
	8.5.1Filtering
	8.5.2Legend

	8.6Thread View
	8.7Graph Object Details Dialog
	8.8Metrics Views

	9.External Event Modeling
	9.1Effect-based Modeling Concepts
	9.2The Tools for Modeling Effects
	9.3Components of the Effect-modeling Process
	9.3.1Event Models, Classes, and Hierarchy
	9.3.2 Impact Models
	9.3.3The Transducer
	9.3.4Infrastructure Hooks

	9.4Development and Usage Guidance
	9.4.1Current Extensions and Models
	9.4.1.1CyberAttackEvent
	9.4.1.2SimpleKEvent

	9.4.2Creating new Event Types

	9.5Injecting Real World Events into Cougaar
	9.5.1Editing Real World Events file

	10.Future Development
	11.References

